欢迎来到留学生英语论文网

客服信息

我们支持 澳洲论文代写 Assignment代写、加拿大论文代写 Assignment代写、新西兰论文代写 Assignment代写、美国论文代写 Assignment代写、英国论文代写 Assignment代写、及其他国家的英语文书润色修改代写方案.论文写作指导服务

唯一联系方式Q微:7878393

当前位置:首页 > 论文范文 > Physics

The modern world of fiber optics

发布时间:2017-04-16
该论文是我们的学员投稿,并非我们专家级的写作水平!如果你有论文作业写作指导需求请联系我们的客服人员

HISTORY OF OPTICAL FIBER-

Fiber optics, though used extensively in the modern world, is a fairly simple and old technology. Guiding of light by refraction, the principle that makes fiber optics possible, was first demonstrated by Daniel Colladon and Jacques Babinet in Paris in the early 1840s. John Tyndall included a demonstration of it in his public lectures in London a dozen years later. Tyndall also wrote about the property of total internal reflection in an introductory book about the nature of light in 1870: "When the light passes from air into water, the refracted ray is bent towards the perpendicular... When the ray passes from water to air it is bent from the perpendicular... If the angle which the ray in water encloses with the perpendicular to the surface be greater than 48 degrees, the ray will not quit the water at all: it will be totally reflected at the surface.... The angle which marks the limit where total reflection begins is called the limiting angle of the medium. For water this angle is 48°27', for flint glass it is 38°41', while for diamond it is 23°42'.

Practical applications, such as close internal illumination during dentistry, appeared early in the twentieth century. Image transmission through tubes was demonstrated independently by the radio experimenter Clarence Hansell and the television pioneer John Logie Baird in the 1920s. The principle was first used for internal medical examinations by Heinrich Lamm in the following decade. In 1952, physicist Narinder Singh Kapany conducted experiments that led to the invention of optical fiber. Modern optical fibers, where the glass fiber is coated with a transparent cladding to offer a more suitable refractive index, appeared later in the decade. Development then focused on fiber bundles for image transmission. The first fiber optic semi-flexible gastroscope was patented by Basil Hirschowitz, C. Wilbur Peters, and Lawrence E. Curtiss, researchers at the University of Michigan, in 1956. In the process of developing the gastroscope, Curtiss produced the first glass-clad fibers; previous optical fibers had relied on air or impractical oils and waxes as the low-index cladding material. A variety of other image transmission applications soon followed.

Jun-ichi Nishizawa, a Japanese scientist at Tohoku University, was the first to propose the use of optical fibers for communications in 1963. Nishizawa invented other technologies that contributed to the development of optical fiber communications as well. Nishizawa invented the graded-index optical fiber in 1964 as a channel for transmitting light from semiconductor lasers over long distances with low loss.

In 1965, Charles K. Kao and George A. Hockham of the British company Standard Telephones and Cables (STC) were the first to promote the idea that the attenuation in optical fibers could be reduced below 20 decibels per kilometer (dB/km), allowing fibers to be a practical medium for communication. They proposed that the attenuation in fibers available at the time was caused by impurities, which could be removed, rather than fundamental physical effects such as scattering. This discovery led to Kao being awarded the Nobel Prize in Physics in 2009.

The crucial attenuation level of 20dB/km was first achieved in 1970, by researchers Robert D. Maurer, Donald Keck, Peter C. Schultz, and Frank Zimar working for American glass maker Corning Glass Works, now Corning Incorporated. They demonstrated a fiber with 17dB/km attenuation by doping silica glass with titanium. A few years later they produced a fiber with only 4dB/km attenuation using germanium dioxide as the core dopant. Such low attenuations ushered in optical fiber telecommunications and enabled the Internet. In 1981, General Electric produced fused quartz ingots that could be drawn into fiber optic strands 25 miles (40km) long.

Attenuations in modern optical cables are far less than those in electrical copper cables, leading to long-haul fiber connections with repeater distances of 70-150 kilometres (43-93mi). The erbium-doped fiber amplifier, which reduced the cost of long-distance fiber systems by reducing or even in many cases eliminating the need for optical-electrical-optical repeaters, was co-developed by teams led by David N. Payne of the University of Southampton, and Emmanuel Desurvire at Bell Labs in 1986. The more robust optical fiber commonly used today utilizes glass for both core and sheath and is therefore less prone to aging processes. It was invented by Gerhard Bernsee in 1973 of Schott Glass in Germany.

In 1991, the emerging field of photonic crystals led to the development of photonic-crystal fiber. Which guides light by means of diffraction from a periodic structure, rather than total internal reflection? The first photonic crystal fibers became commercially available in 2000. Photonic crystal fibers can be designed to carry higher power than conventional fiber, and their wavelength dependent properties can be manipulated to improve their performance in certain applications.

APPLICATIONS-

Optical fiber can be used as a medium for telecommunication and networking because it is flexible and can be bundled as cables. It is especially advantageous for long-distance communications, because light propagates through the fiber with little attenuation compared to electrical cables. This allows long distances to be spanned with few repeaters. Additionally, the per-channel light signals propagating in the fiber can be modulated at rates as high as 111 gigabits per second, although 10 or 40Gb/s is typical in deployed systems. Each fiber can carry many independent channels, each using a different wavelength of light (wavelength-division multiplexing (WDM)). The net data rate (data rate without overhead bytes) per fiber is the per-channel data rate reduced by the FEC overhead, multiplied by the number of channels (usually up to eighty in commercial dense WDM systems as of 2008[update]). The current laboratory fiber optic data rate record, held by Bell Labs in Villarceaux, France, is multiplexing 155 channels, each carrying 100 Gbps over a 7000km fiber.Over short distances, such as networking within a building, fiber saves space in cable ducts because a single fiber can carry much more data than a single electrical cable. Fiber is also immune to electrical interference; there is no cross-talk between signals in different cables and no pickup of environmental noise. Non-armored fiber cables do not conduct electricity, which makes fiber a good solution for protecting communications equipment located in high voltage environments such as power generation facilities, or metal communication structures prone to lightning strikes. They can also be used in environments where explosive fumes are present, without danger of ignition. Wiretapping is more difficult compared to electrical connections, and there are concentric dual core fibers that are said to be tap-proof.

Although fibers can be made out of transparent plastic, glass, or a combination of the two, the fibers used in long-distance telecommunications applications are always glass, because of the lower optical attenuation. Both multi-mode and single-mode fibers are used in communications, with multi-mode fiber used mostly for short distances, up to 550m (600 yards), and single-mode fiber used for longer distance links. Because of the tighter olerances required to couple light into and between single-mode fibers (core diameter about 10 micrometers), single-mode transmitters, receivers, amplifiers and other components are generally more expensive than multi-mode components.

APPLICATIONS NO-1-

Wavelength Division Multiplexing (WDM) is a fiber-optic transmission technique. It involves the process of multiplexing many different wavelength signals onto a single fiber. So each fiber has a set of parallel optical channels, each using slightly different light wavelengths. In essence WDM is different from multiplexing, as we understand it in electronics, where Multiplexing means only a single information channel is routed from the input to the output side at a particular time. Here we are just mixing up the signals and separating out the signals at the output side. Basically demultiplexing is the cruxes of the WDM modelFrom the instrumentation point of view optical fibers have some integral benefits over conventional information carriers like copper wires or pneumatic pipes. They offer several advantages such as wide signal bandwidth, electrical isolation, no cross talk, interference immunity, light weight, low volume cabling and immunity to fire. The usual trend is to send more than one meaningful signal through a single fiber. To derive the benefits of large BW offered by optical fiber we present a method to implement a WDM system to instrumentation.

APPLICATIONS NO-2-

These devices may be further classified into Active and Passive devices. Active devices are those which can be actively switched or tuned according to wavelength. These devices include multiwavelength source and detector arrays and wavelength tunable devices. Passive devices are those which simply apply principle of angular dispersion. They include prislens system to project light from two fibers on to a single fiber. Diffraction grating devices, integrated waveguide devices etc.. In our project we have used a lens system to project light from two fibers on to a single fiber.

In case of communication systems TX stands for different communication signals. However, in instrumentation systems these are wavelength or color modulated optical fiber sensors (OFS). These types of sensors are exploited in areas where the modulated light undergoes a change in its wavelength or color, e.g.,

Chemical analysis using indicator solution (for pH, CH4 sensing).

APPLICATIONS NO-3-

Fiber optic sensors

Fibers have many uses in remote sensing. In some applications, the sensor is itself an optical fiber. In other cases, fiber is used to connect a non-fiberoptic sensor to a measurement system. Depending on the application, fiber may be used because of its small size, or the fact that no electrical power is needed at the remote location, or because many sensors can be multiplexed along the length of a fiber by using different wavelengths of light for each sensor, or by sensing the time delay as light passes along the fiber through each sensor. Time delay can be determined using a device such as an optical time-domain reflectometer.

Optical fibers can be used as sensors to measure strain, temperature, pressure and other quantities by modifying a fiber so that the quantity to be measured modulates the intensity, phase, polarization, wavelength or transit time of light in the fiber. Sensors that vary the intensity of light are the simplest, since only a simple source and detector are required. A particularly useful feature of such fiber optic sensors is that they can, if required, provide distributed sensing over distances of up to one meter.

Extrinsic fiber optic sensors use an optical fiber cable, normally a multi-mode one, to transmit modulated light from either a non-fiber optical sensor, or an electronic sensor connected to an optical transmitter. A major benefit of extrinsic sensors is their ability to reach places which are otherwise inaccessible. An example is the measurement of temperature inside aircraft jet engines by using a fiber to transmit radiation into a radiation pyrometer located outside the engine. Extrinsic sensors can also be used in the same way to measure the internal temperature of electrical transformers, where the extreme electromagnetic fields present make other measurement techniques impossible. Extrinsic sensors are used to measure vibration, rotation, displacement, velocity, acceleration, torque, and twisting.

Other uses of optical fibers

Fibers are widely used in illumination applications. They are used as light guides in medical and other applications where bright light needs to be shone on a target without a clear line-of-sight path. In some buildings, optical fibers are used to route sunlight from the roof to other parts of the building (see non-imaging optics). Optical fiber illumination is also used for decorative applications, including signs, art, and artificial Christmas trees. Swarovski boutiques use optical fibers to illuminate their crystal showcases from many different angles while only employing one light source. Optical fiber is an intrinsic part of the light-transmitting concrete building product, LiTraCon.Optical fiber is also used in imaging optics. A coherent bundle of fibers is used, sometimes along with lenses, for a long, thin imaging device called an endoscope, which is used to view objects through a small hole. Medical endoscopes are used for minimally invasive exploratory or surgical procedures (endoscopy). Industrial endoscopes (see fiberscope or borescope) are used for inspecting anything hard to reach, such as jet engine interiors.

In spectroscopy, optical fiber bundles are used to transmit light from a spectrometer to a substance which cannot be placed inside the spectrometer itself, in order to analyze its composition. A spectrometer analyzes substances by bouncing light off of and through them. By using fibers, a spectrometer can be used to study objects that are too large to fit inside, or gasses, or reactions which occur in pressure vessels. An optical fiber doped with certain rare earth elements such as erbium can be used as the gain medium of a laser or optical amplifier. Rare-earth doped optical fibers can be used to provide signal amplification by splicing a short section of doped fiber into a regular (undoped) optical fiber line. The doped fiber is optically pumped with a second laser wavelength that is coupled into the line in addition to the signal wave. Both wavelengths of light are transmitted through the doped fiber, which transfers energy from the second pump wavelength to the signal wave. The process that causes the amplification is stimulated emission.Optical fibers doped with a wavelength shifter are used to collect scintillation light in physics experiments.

Optical fiber can be used to supply a low level of power (around one watt) to electronics situated in a difficult electrical environment. Examples of this are electronics in high-powered antenna elements and measurement devices used in high voltage transmission equipment.

PRINCIPLE OF OPERATION-

An optical fiber is a cylindrical dielectric waveguide (no conducting waveguide) that transmits light along its axis, by the process of total internal reflection. The fiber consists of a core surrounded by a cladding layer, both of which are made of dielectric materials. To confine the optical signal in the core, the refractive index of the core must be greater than that of the cladding. The boundary between the core and cladding may either be abrupt, in step-index fiber, or gradual, in graded-index fiber

Index of refraction-

The index of refraction is a way of measuring the speed of light in a material. Light travels fastest in a vacuum, such as outer space. The actual speed of light in a vacuum is about 300 million meters (186 thousand miles) per second. Index of refraction is calculated by dividing the speed of light in a vacuum by the speed of light in some other medium. The index of refraction of a vacuum is therefore 1, by definition. The typical value for the cladding of an optical fiber is 1.46. The core value is typically 1.48. The larger the index of refraction, the slower light travels in that medium. From this information, a good rule of thumb is that signal using optical fiber for communication will travel at around 200 million meters per second. Or to put it another way, to travel 1000 kilometres in fiber, the signal will take 5 milliseconds to propagate. Thus a phone call carried by fiber between Sydney and New York, a 12000 kilometre distance, means that there is an absolute minimum delay of 60 milliseconds (or around 1/16th of a second) between when one caller speaks to when the other hears. (Of course the fiber in this case will probably travel a longer route, and there will be additional delays due to communication equipment switching and the process of encoding and decoding the voice onto the fiber).

Total internal reflection

When light travelling in a dense medium hits a boundary at a steep angle (larger than the "critical angle" for the boundary), the light will be completely reflected. This effect is used in optical fibers to confine light in the core. Light travels along the fiber bouncing back and forth off of the boundary. Because the light must strike the boundary with an angle greater than the critical angle, only light that enters the fiber within a certain range of angles can travel down the fiber without leaking out. This range of angles is called the acceptance cone of the fiber. The size of this acceptance cone is a function of the refractive index difference between the fiber's core and cladding.

In simpler terms, there is a maximum angle from the fiber axis at which light may enter the fiber so that it will propagate, or travel, in the core of the fiber. The sine of this maximum angle is the numerical aperture (NA) of the fiber. Fiber with a larger NA requires less precision to splice and work with than fiber with a smaller NA. Single-mode fiber has a small NA.

Multi-mode fiber

The propagation of light through a multi-mode optical fiber.

Fiber with large core diameter (greater than 10micrometers) may be analyzed by geometrical optics. Such fiber is called multi-mode fiber, from the electromagnetic analysis (see below). In a step-index multi-mode fiber, rays of light are guided along the fiber core by total internal reflection. Rays that meet the core-cladding boundary at a high angle (measured relative to a line normal to the boundary), greater than the critical angle for this boundary, are completely reflected. The critical angle (minimum angle for total internal reflection) is determined by the difference in index of refraction between the core and cladding materials. Rays that meet the boundary at a low angle are refracted from the core into the cladding, and do not convey light and hence information along the fiber. The critical angle determines the acceptance angleof the fiber, often reported as a numerical aperture. A high numerical aperture allows light to propagate down the fiber in rays both close to the axis and at various angles, allowing efficient coupling of light into the fiber. However, this high numerical aperture increases the amount of dispersion as rays at different angles have different path lengths and therefore take different times to traverse the fiber.

Optical fiber types-

In graded-index fiber, the index of refraction in the core decreases continuously between the axis and the cladding. This causes light rays to bend smoothly as they approach the cladding, rather than reflecting abruptly from the core-cladding boundary. The resulting curved paths reduce multi-path dispersion because high angle rays pass more through the lower-index periphery of the core, rather than the high-index center. The index profile is chosen to minimize the difference in axial propagation speeds of the various rays in the fiber. This ideal index profile is very close to a parabolic relationship between the index and the distance from the axis.

Single-mode fiber-

The structure of a typical single-mode fiber-

  1. Core: 8µm diameter
  2. Cladding: 125µm dia.
  3. Buffer: 250µm dia.
  4. Jacket: 400µm dia.

Fiber with a core diameter less than about ten times the wavelength of the propagating light cannot be modelled using geometric optics. Instead, it must be analyzed as an electromagnetic structure, by solution of Maxwell's equations as reduced to the electromagnetic wave equation. The electromagnetic analysis may also be required to understand behaviours such as speckle that occur when coherent light propagates in multi-mode fiber. As an optical waveguide, the fiber supports one or more confined transverse modes by which light can propagate along the fiber. Fiber supporting only one mode is called single-mode or mono-mode fiber. The behavior of larger-core multi-mode fiber can also be modeled using the wave equation, which shows that such fiber supports more than one mode of propagation (hence the name). The results of such modeling of multi-mode fiber approximately agree with the predictions of geometric optics, if the fiber core is large enough to support more than a few modes. The waveguide analysis shows that the light energy in the fiber is not completely confined in the core. Instead, especially in single-mode fibers, a significant fraction of the energy in the bound mode travels in the cladding as an evanescent wave.

The most common type of single-mode fiber has a core diameter of 8-10 micrometers and is designed for use in the near infrared. The mode structure depends on the wavelength of the light used, so that this fiber actually supports a small number of additional modes at visible wavelengths. Multi-mode fiber, by comparison, is manufactured with core diameters as small as 50 micrometers and as large as hundreds of micrometres. The normalized frequency V for this fiber should be less than the first zero of the Bessel function J0 (approximately 2.405).

Special-purpose fiber-

Some special-purpose optical fiber is constructed with a non-cylindrical core and/or cladding layer, usually with an elliptical or rectangular cross-section. Propagation.Photonic-crystal fiber is made with a regular pattern of index variation (often in the form of cylindrical holes that run along the length of the fiber). Such fiber uses diffraction effects instead of or in addition to total internal reflection, to confine light to the fibber's core. The properties of the fiber can be tailored to a wide variety of

Mechanisms of attenuation

Light attenuation by ZBLAN and silica fibers-

Attenuation in fiber optics, also known as transmission loss, is the reduction in intensity of the light beam (or signal) with respect to distance travelled through a transmission medium. Attenuation coefficients in fiber optics usually use units of dB/km through the medium due to the relatively high quality of transparency of modern optical transmission media. The medium is typically usually a fiber of silica glass that confines the incident light beam to the inside. Attenuation is an important factor limiting the transmission of a digital signal across large distances. Thus, much research has gone into both limiting the attenuation and maximizing the amplification of the optical signal. Empirical research has shown that attenuation in optical fiber is caused primarily by both scattering and absorption.

Light scattering-

Specular reflection

Diffuse reflection-

The propagation of light through the core of an optical fiber is based on total internal reflection of the lightwave. Rough and irregular surfaces, even at the molecular level, can cause light rays to be reflected in random directions. This is called diffuse reflection or scattering, and it is typically characterized by wide variety of reflection angles. Light scattering depends on the wavelength of the light being scattered. Thus, limits to spatial scales of visibility arise, depending on the frequency of the incident light wave and the physical dimension (or spatial scale) of the scattering center, which is typically in the form of some specific microstructural feature. Since visible light has a wavelength of the order of one micron (one millionth of a meter) scattering centers will have dimensions on a similar spatial scale. Thus, attenuation results from the incoherent scattering of light at internal surfaces and interfaces. In (poly) crystalline materials such as metals and ceramics, in addition to pores, most of the internal surfaces or interfaces are in the form of grain boundaries that separate tiny regions of crystalline order. It has recently been shown that when the size of the scattering center (or grain boundary) is reduced below the size of the wavelength of the light being scattered, the scattering no longer occurs to any significant extent. This phenomenon has given rise to the production of transparent ceramic materials.

Similarly, the scattering of light in optical quality glass fiber is caused by molecular level irregularities (compositional fluctuations) in the glass structure. Indeed, one emerging school of thought is that a glass is simply the limiting case of a polycrystalline solid. Within this framework, "domains" exhibiting various degrees of short-range order become the building blocks of both metals and alloys, as well as glasses and ceramics. Distributed both between and within these domains are micro-structural defects which will provide the most ideal locations for the occurrence of light scattering. This same phenomenon is seen as one of the limiting factors in the transparency of IR missile domes.

UV-Vis-IR absorption

In addition to light scattering, attenuation or signal loss can also occur due to selective absorption of specific wavelengths, in a manner similar to that responsible for the appearance of color. Primary material considerations include both electrons and molecules as follows:

  1. At the electronic level, it depends on whether the electron orbitals are spaced (or "quantized") such that they can absorb a quantum of light (or photon) of a specific wavelength or frequency in the ultraviolet (UV) or visible ranges. This is what gives rise to color.
  2. At the atomic or molecular level, it depends on the frequencies of atomic or molecular vibrations or chemical bonds, how close-packed its atoms or molecules are, and whether or not the atoms or molecules exhibit long-range order. These factors will determine the capacity of the material transmitting longer wavelengths in the infrared (IR), far IR, radio and microwave ranges.

The design of any optically transparent device requires the selection of materials based upon knowledge of its properties and limitations. The latticeabsorption characteristics observed at the lower frequency regions (mid IR to far-infrared wavelength range) define the long-wavelength transparency limit of the material. They are the result of the interactive coupling between the motions of thermally induced vibrations of the constituent atoms and molecules of the solid lattice and the incident light wave radiation. Hence, all materials are bounded by limiting regions of absorption caused by atomic and molecular vibrations (bond-stretching)in the far-infrared (>10µm).

Normal modes of vibration in a crystalline solid

Thus, multi-phonon absorption occurs when two or more phonons simultaneously interact to produce electric dipole moments with which the incident radiation may couple. These dipoles can absorb energy from the incident radiation, reaching a maximum coupling with the radiation when the frequency is equal to the fundamental vibration mode of the molecular dipole (e.g. Si-O bond) in the far-infrared, or one of its harmonics.

The selective absorption of infrared (IR) light by a particular material occurs because the selected frequency of the light wave matches the frequency (or an integral multiple of the frequency) at which the particles of that material vibrate. Since different atoms and molecules have different natural frequencies of vibration, they will selectively absorb different frequencies (or portions of the spectrum) of infrared (IR) light.

Reflection and transmission of light waves occur because the frequencies of the light waves do not match the natural resonant frequencies of vibration of the objects. When IR light of these frequencies strike an object, the energy is either reflected or transmitted.

Manufacturing of optical fiber-

Materials-

Glass optical fibers are almost always made from silica, but some other materials, such as fluorozirconate, fluoroaluminate, and chalcogenide glasses, are used for longer-wavelength infrared applications. Like other glasses, these glasses have a refractive index of about 1.5. Typically the difference between core and cladding is less than one percent.

Plastic optical fibers (POF) are commonly step-index multi-mode fibers with a core diameter of 0.5 millimeters or larger. POF typically have higher attenuation co-efficient than glass fibers, 1dB/m or higher, and this high attenuation limits the range of POF-based systems.

Silica-

Tetrahedral structural unit of silica (SiO2).

The amorphous structure of glassy silica (SiO2). No long-range order is present, however there is local ordering with respect to the tetrahedral arrangement of oxygen (O) atoms around the silicon (Si) atoms.

Silica exhibits fairly good optical transmission over a wide range of wavelengths. In the near-infrared (near IR) portion of the spectrum, particularly around 1.5?µm, silica can have extremely low absorption and scattering losses of the order of 0.2?dB/km. A high transparency in the 1.4-µm region is achieved by maintaining a low concentration of hydroxyl groups (OH). Alternatively, a high OH concentration is better for transmission in the ultraviolet (UV) region. Silica can be drawn into fibers at reasonably high temperatures, and has a fairly broad glass transformation range. One other advantage is that fusion splicing and cleaving of silica fibers is relatively effective. Silica fiber also has high mechanical strength against both pulling and even bending, provided that the fiber is not too thick and that the surfaces have been well prepared during processing. Even simple cleaving (breaking) of the ends of the fiber can provide nicely flat surfaces with acceptable optical quality. Silica is also relatively chemically inert. In particular, it is not hygroscopic (does not absorb water).

Silica glass can be doped with various materials. One purpose of doping is to raise the refractive index (e.g. with Germanium dioxide (GeO2) or Aluminium oxide (Al2O3)) or to lower it (e.g. with fluorine or Boron trioxide (B2O3)). Doping is also possible with laser-active ions (for example, rare earth-doped fibers) in order to obtain active fibers to be used, for example, in fiber amplifiers or laser applications. Both the fiber core and cladding are typically doped, so that the entire assembly (core and cladding) is effectively the same compound (e.g. an aluminosilicate, germanosilicate, phosphosilicate or borosilicate glass).Particularly for active fibers, pure silica is usually not a very suitable host glass, because it exhibits a low solubility for rare earth ions. This can lead to quenching effects due to clustering of dopant ions. Aluminosilicates are much more effective in this respect.

Silica fiber also exhibits a high threshold for optical damage. This property ensures a low tendency for laser-induced breakdown. This is important for fiber amplifiers when utilized for the amplification of short pulses. Because of these properties silica fibers are the material of choice in many optical applications, such as communications (except for very short distances with plastic optical fiber), fiber lasers, fiber amplifiers, and fiber-optic sensors. The large efforts which have been put forth in the development of various types of silica fibers have further increased the performance of such fibers over other materials.

Fluorides-

Fluoride glass is a class of non-oxide optical quality glasses composed of fluorides of various metals. Due to their low viscosity, it is very difficult to completely avoid crystallization while processing it through the glass transition (or drawing the fiber from the melt). Thus, although heavy metal fluoride glasses (HMFG) exhibit very low optical attenuation, they are not only difficult to manufacture, but are quite fragile, and have poor resistance to moisture and other environmental attacks. Their best attribute is that they lack the absorption band associated with the hydroxyl (OH) group (3200-3600cm-1), which is present in nearly all oxide-based glasses. An example of a heavy metal fluoride glass is the ZBLAN glass group, composed of zirconium, barium, lanthanum, aluminium, and sodium fluorides. Their main technological application is as optical waveguides in both planar and fiber form. They are advantageous especially in the mid-infrared (2000-5000nm) range.

HMFG's were initially slated for optical fiber applications, because the intrinsic losses of a mid-IR fiber could in principle be lower than those of silica fibers, which are transparent only up to about 2?µm. However, such low losses were never realized in practice, and the fragility and high cost of fluoride fibers made them less than ideal as primary candidates. Later, the utility of fluoride fibers for various other applications was discovered. These include mid-IR spectroscopy, fiber optic sensors, thermometry, and imagingAlso, fluoride fibers can be used to for guided light wave transmission in media such as YAG (yttria-alumina garnet) lasers at 2.9?µm, as required for medical applications (e.g. ophthalmology and dentistry).

Phosphates-

The P4O10 cakelike structure-the basic building block for phosphate glass.

Phosphate glass constitutes a class of optical glasses composed of met phosphates of various metals. Instead of the SiO4 tetrahedral observed in silicate glasses, the building block for this glass former is Phosphorus pentoxide (P2O5), which crystallizes in at least four different forms. The most familiar polymorph (see figure) comprises molecules of P4O10.

Phosphate glasses can be advantageous over silica glasses for optical fibers with a high concentration of doping rare earth ions. A mix of fluoride glass and phosphate glass is fluorophosphate glass.

Chalcogenides-

The halogens-the elements in group 16 of the periodic table-particularly sulphur (S), selenium (Se) and tellurium (Te)-rea-ct with more electropositive elements, such as silver, to form chalcogenides. These are extremely versatile compounds, in that they can be crystalline or amorphous, metallic or semiconducting, and conductors of ions or electrons.

Process-

Standard optical fibers are made by first constructing a large-diameter perform, with a carefully controlled refractive index profile, and then pulling the perform to form the long, thin optical fiber. The perform is commonly made by three chemical vapour deposition methods: inside vapour deposition, outside vapour deposition, and vapour axial deposition.

Illustration of the modified chemical vapor deposition (inside) process

With inside vapor deposition, the perform starts as a hollow glass tube approximately 40centimetres (16in) long, which is placed horizontally and rotated slowly on a lathe. Gases such as silicon tetrachloride (SiCl4) or germanium tetrachloride (GeCl4) are injected with oxygen in the end of the tube. The gases are then heated by means of an external hydrogen burner, bringing the temperature of the gas up to 1900K (1600°C, 3000°F), where the tetra chlorides react with oxygen to produce silica or Germania (germanium dioxide) particles. When the reaction conditions are chosen to allow this reaction to occur in the gas phase throughout the tube volume, in contrast to earlier techniques where the reaction occurred only on the glass surface, this technique is called modified chemical vapor deposition.

The oxide particles then agglomerate to form large particle chains, which subsequently deposit on the walls of the tube as soot. The deposition is due to the large difference in temperature between the gas core and the wall causing the gas to push the particles outwards (this is known as thermophoresis). The torch is then traversed up and down the length of the tube to deposit the material evenly. After the torch has reached the end of the tube, it is then brought back to the beginning of the tube and the deposited particles are then melted to form a solid layer. This process is repeated until a sufficient amount of material has been deposited. For each layer the composition can be modified by varying the gas composition, resulting in precise control of the finished fiber's optical properties.

In outside vapor deposition or vapor axial deposition, the glass is formed by flame hydrolysis, a reaction in which silicon tetrachloride and germanium tetrachloride are oxidized by reaction with water (H2O) in an ox hydrogen flame. In outside vapor deposition the glass is deposited onto a solid rod, which is removed before further processing. In vapor axial deposition, a short seed rod is used, and a porous performs, whose length is not limited by the size of the source rod, is built up on its end. The porous perform is consolidated into a transparent, solid perform by heating to about 1800K (1500°C, 2800°F).The perform, however constructed, is then placed in a device known as a drawing tower, where the perform tip is heated and the optic fiber is pulled out as a string. By measuring the resultant fiber width, the tension on the fiber can be controlled to maintain the fiber thickness.

Coatings-

Fiber optic coatings are UV-cured urethane acrylate composite materials applied to the outside of the fiber during the drawing process. The coatings protect the very delicate strands of glass fiber-about the size of a human hair-and allow it to survive the rigors of manufacturing, proof testing, cabling and installation.Today's glass optical fiber draw processes employ a dual-layer coating approach. An inner primary coating is designed to act as a shock absorber to minimize attenuation caused by microbending. An outer secondary coating protects the primary coating against mechanical damage and acts as a barrier to lateral forces. These fiber optic coating layers are applied during the fiber draw, at speeds approaching 100kilometres per hour (60mph). Fiber optic coatings are applied using one of two methods: wet-on-dry, in which the fiber passes through a primary coating application, which is then UV cured, then through the secondary coating application which is subsequently cured; and wet-on-wet, in which the fiber passes through both the primary and secondary coating applications and then goes to UV curing.

Fiber optic coatings are applied in concentric layers to prevent damage to the fiber during the drawing application and to maximize fiber strength and micro bend resistance. Unevenly coated fiber will experience non-uniform forces when the coating expands or contracts, and is susceptible to greater signal attenuation. Under proper drawing and coating processes, the coatings are concentric around the fiber, continuous over the length of the application and have constant thickness.Fiber optic coatings protect the glass fibers from scratches that could lead to strength degradation. The combination of moisture and scratches accelerates the aging and deterioration of fiber strength. When fiber is subjected to low stresses over a long period, fiber fatigue can occur. Over time or in extreme conditions, these factors combine to cause microscopic flaws in the glass fiber to propagate, which can ultimately result in fiber failure. Three key characteristics of fiber optic waveguides can be affected by environmental conditions: strength, attenuation and resistance to losses caused by micro bending. External fiber optic coatings protect glass optical fiber from environmental conditions that can affect the fiber's performance and long-term durability. On the inside, coatings ensure the reliability of the signal being carried and help minimize attenuation due to micro bending.

An optical fiber cable-

In practical fibers, the cladding is usually coated with a tough resin buffer layer, which may be further surrounded by a jacket layer, usually plastic. These layers add strength to the fiber but do not contribute to its optical wave guide properties. Rigid fiber assemblies sometimes put light-absorbing ("dark") glass between the fibers, to prevent light that leaks out of one fiber from entering another. This reduces cross-talk between the fibers, or reduces flare in fiber bundle imaging applications.

Modern cables come in a wide variety of sheathings and armor, designed for applications such as direct burial in trenches, high voltage isolation, and dual use as power li installation in conduit, lashing to aerial telephone poles, submarine installation, and insertion in paved streets. The cost of small fiber-count pole-mounted cables has greatly decreased due to the high Japanese and South Korean demand for fibbers to the home (FTTH) installations.Fiber cable can be very flexible, but traditional fiber's loss increases greatly if the fiber is bent with a radius smaller than around 30mm. This creates a problem when the cable is bent around corners or wound around a spool, making FTTX installations more complicated. "Bendable fibers", targeted towards easier installation in home environments, have been standardized as ITU-T G.657. This type of fiber can be bent with a radius as low as 7.5mm without adverse impact. Even more bendable fibers have been developed. Bendable fiber may also be resistant to fiber hacking, in which the signal in a fiber is surreptitiously monitored by bending the fiber and detecting the leakage.

Termination and splicing-

ST connectors on multi-mode fiber

Optical fibers are connected to terminal equipment by optical fibre connectors. These connectors are usually of a standard type such as FC, SC, ST, LC, or MTRJ.Optical fibers may be connected to each other by connectors or by splicing that are, joining two fibers together to form a continuous optical waveguide. The generally accepted splicing method is arc fusion splicing, which melts the fiber ends together with an electric arc. For quicker fastening jobs, a "mechanical splice" is used.

Fusion splicing is done with a specialized instrument that typically operates as follows: The two cable ends are fastened inside a splice enclosure that will protect the splices, and the fiber ends are stripped of their protective polymer coating (as well as the sturdier outer jacket, if present). The ends are cleaved (cut) with a precision cleaver to make them perpendicular, and are placed into special holders in the splicer. The splice is usually inspected via a magnified viewing screen to check the cleaves before and after the splice. The splicer uses small motors to align the end faces together, and emits a small spark between electrodes at the gap to burn off dust and moisture. Then the splicer generates a larger spark that raises the temperature above the melting point of the glass, fusing the ends together permanently. The location and energy of the spark is carefully controlled so that the molten core and cladding don't mix, and this minimizes optical loss. A splice loss estimate is measured by the splicer, by directing light through the cladding on one side and measuring the light leaking from the cladding on the other side. A splice loss under 0.1dB is typical. The complexity of this process makes fiber splicing much more difficult than splicing copper wire.Mechanical fiber splices are designed to be quicker and easier to install, but there is still the need for stripping, careful cleaning and precision cleaving. The fiber ends are aligned and held together by a precision-made sleeve, often using a clear index-matching gel that enhances the transmission of light across the joint. Such joints typically have higher optical loss and are less robust than fusion splices, especially if the gel is used. All splicing techniques involve the use of an enclosure into which the splice is placed for protection afterward.

Fibers are terminated in connectors so that the fiber end is held at the end face precisely and securely. A fiber-optic connector is basically a rigid cylindrical barrel surrounded by a sleeve that holds the barrel in its mating socket. The mating mechanism can be "push and click", "turn and latch" ("bayonet"), or screw-in (threaded). A typical connector is installed by preparing the fiber end and inserting it into the rear of the connector body. Quick-set adhesive is usually used so the fiber is held securely, and a strain relief is secured to the rear. Once the adhesive has set, the fiber's end is polished to a mirror finish. Various polish profiles are used, depending on the type of fiber and the application. For single-mode fiber, the fiber ends are typically polished with a slight curvature, such that when the connectors are mated the fibers touch only at their cores. This is known as a "physical contact" (PC) polish. The curved surface may be polished at an angle, to make an "angled physical contact" (APC) connection. Such connections have higher loss than PC connections, but greatly reduced back reflection, because light that reflects from the angled surface leaks out of the fiber core; the resulting loss in signal strength is known as gap loss. APC fiber ends have low back reflection even when disconnected. In the mid 1990's fiber optic cable termination was very labor intensive with many different parts per connector, fiber polishing and the need for an oven to bake the epoxy in each connector made terminating fiber optic very hard and labour intensive. Today many different connectors are on the market and offer an easier less labor intensive way of terminating fiber optic cable.

Some of the most popular connectors have already been polished from the factory and include a gel inside the connector and those two steps help save money on labor especially on large projects. A Cleave (fibre) is made at a required length in order to get as close the the polished piece already inside the connector, with the gel surrounding the point where the two piece meet inside the connector very little light loss is exposed. Here's an example of a newer style connector being terminated.

Free-space coupling

It is often necessary to align an optical fiber with another optical fiber, or with an optoelectronic device such as a light-emitting diode, a laser diode, or a modulator. This can involve either carefully aligning the fiber or placing it in contact with the device, or can use a lens to allow coupling over an air gap. In some cases the end of the fiber is polished into a curved form that is designed to allow it to act as a lens.

In a laboratory environment, a bare fiber end is coupled using a fiber launch system, which uses a microscope objective lens to focus the light down to a fine point. A precision translation stage (micro-positioning table) is used to move the lens, fiber, or device to allow the coupling efficiency to be optimized. Fibers with a connector on the end make this process much simpler: the connector is simply plugged into a realigned fibrotic collimator, which contains a lens that is either accurately positioned with respect to the fiber, or is adjustable. To achieve the best injection efficiency into single mode fibre, the direction, position, size and divergence of the beam must all be optimized. With good beams, 70% to 90% coupling efficiency can be achieved.With properly polished singlemode fibers, the emitted beam has an almost perfect Gaussian shape-even in the far field-if a good lens is used. The lens needs to be large enough to support the full numerical aperture of the fiber, and must not introduce aberrations in the beam. Aspheric lenses are typically used.

Fiber fuse

At high optical intensities, megawatts per square centimeter, when a fiber is subjected to a shock or is otherwise suddenly damaged, a fiber fuse can occur. The reflection from the damage vaporizes the fiber immediately before the break, and this new defect remains reflective so that the damage propagates back toward the transmitter at 1-3 meters per second (4-11km/h, 2-8mph). The open fibre control system, which ensures laser eye safety in the event of a broken fiber, can also effectively halt propagation of the fibbers fuse. In situations, such as undersea cables, where high power levels might be used

REFERENCES:-

  1. www.google.co.in
  2. http://en.wikipedia.org/wiki/Optical_fiber"
  3. www.freepatentsonline.com/78456.html
  4. http://www.drive.optical.com/WhatsInside.htm

上一篇:The concept of moving in Time travel 下一篇:Did a Meteorite Cause the Extinction of the Dinosaurs?